
The Logistic Equation, the Logistic Map and Chaos

In this series we will explore several ideas that lie at the heart of complexity science. 
• Iteration as a source of complexity.
• The use of mathematical models to describe real world events and relationships.
• Continuous vs. discrete time.
• Sensitivity to initial conditions.
• Determinism and fate.
• The logistic map as a path to chaos.
• Feigenbaum’s constant

The models that we will use to explore and illustrate these ideas include:

Logistic equation-based model
Logistic emergent model
Iteration 101
Iteration explorer
Toggle
Mandelbrot Explained
Logistic discrete time model (bunnies)
Web Diagram
Bifurcation Diagram (with zoom)
Sensitivity to Initial Conditions
Universal Patterns: Feigenbaum’s Constants

Repetition on on the road to complexity

Very early in human history people recognized that repetition is a deep and 
ubiquitous feature of life. The cycles of the days, the season, the rise and fall of 
individual fortunes and the fortunes of whole peoples, the succession of 
generations. All of these things share the common feature of repetition and 
variation within that repetition. In this section we will explore some of the ways 
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that repetition or, iteration, as it is more formally called, sometimes gives rise to 
surprising forms of complexity.

It is quite obvious that the repetition of a process will result in quantitative 
change--that is, an accumulation or loss of some quantity or characteristic. On 
the other hand, it is surprising when a repetition of a simple process results in a 
qualitatively new situation. We will see later in this section that this is not only 
possible but an inherent aspect of some of the fundamental processes of living 
system and other interesting systems. 

Iteration (notice that I am switching to repetition’s formal name) usually involves 
repeating some process over and over again with small regular changes at each 
step. Counting aloud with the natural numbers (1,2, 3, ... and so on)  serves as a 
familiar example of iteration. We effortlessly add 1 to the number that we just said 
and say a new number. Then we add one to that number, say it and repeat the 
process as long as we please.

Other examples of iteration might include the process that we use to find a 
precise decimal equivalent for 22 / 7. If we do this by hand, we follow a 
procedure that is mix of division, multiplication, and subtraction. Frequently 
iteration of this sort is tedious and error-prone. Human attention spans are short 
and vulnerable to distraction.  Fortunately, there is another way. Iteration is a 
area in which computers excel. 

We begin our thinking of iteration with a few very simple models that demonstrate  
how computer (specifically, how NetLogo) handles iteration. 
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Iteration 101

The following  models are simple and useful to students new to NetLogo. Others 
should feel free to skip this section and go directly to the section on the Logistic 
Equation. 

The first demonstration  simply introduces users to several ways that iteration is 
accomplished in NetLogo. For beginning programmers, one of the first and most 
fundamental concept is the notion of a variable. This models illustrates how a 
single variable can hold various values as a program runs. 

This model illustrates use of the “repeat” primitive  which simply repeat an action 
a given number of time . It also introduces the “output-window”, an interface 
widget that displays information that is sent to it. 

The use of special variables that change during iteration, external iterators, is 
explored in this model as well. These iterators are useful in helping programmers 
travel through or traverse  a set of items. 

Finally, NetLogo lists are introduced. Lists are a handy way of holding groups of 
related items that you may want to deal with systematically. A list might include a 
group of numbers that you might want to sum, the names of all the students in a 
class, or even, a list of lists--a list contain the names of friends, their addresses, 
and their birthdays. 

NetLogo relies heavily on implicit iteration. Each time you ask turtles or patches 
to do something, you are asking a group or  in NetLogo-ese, an agentset, to do 
something. NetLogo selects an agent at random from the pool of agents in the 
agentset and asks the agent to do the action described. When all agents have 
had heir turn, the ask block is finished. 
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NetLogo “foreach” loops also use implicit iteration. In this case a special primitive 
“?” is used to represent the current item that is “on stage”. Unlike ask statements, 
foreach loops proceed in an orderly, sequential fashion from the first to the last 
item in the list. 

Toggle

The second model, Toggle, illustrates how interesting and surprising behavior 
can sometimes result from a simple action repeated over and over. In Toggle, we 
have a field of light bulbs numbered 0 through 2400. Each light bulb knows its 
own number. As we step through the numbers 0 through 2400, we ask each light 
bulb to toggle its ON/OFF state if it is perfectly divisible by that number*. Lights 
that are ON turn OFF and lights that are ON turn OFF if divisible by the current 
number. The result is a bunch of flashing lights. Patterns march across the fields 
and when the dust settles some lights are ON and others are OFF. Can you 
guess which ones are ON? Hint: It has nothing to do with prime numbers.
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Toggle illustrate several things. First, simply applying the same rules with very 
slight changes--here we are just counting up--can creating interesting and 
potential useful behavior. Who would have guessed that you could find all the 
perfect squares simply by flicking light bulbs on and off? (Although, I admit it 
seems like a cheap trick after the fact!) The second observation is that iteration 
gives us a lot of bang for the buck. The entire Toggle program (aside from some 
introductory eye candy, is really only a couple of lines. 

That’s it. The whole thing!  Iteration is the very heart of computer programming. 

Finally, Toggle illustrates how patterns and answers often emerge from simple 
processes repeated over and over. More on this latter. 

Mandelbrot Explained

Mandelbrot Explained is a model that focuses on how iteration produces the 
spectacular and iconic images found in fractals. Complexity Explorer has an 
entire section devoted to fractals for students interested in pursuing this topic in 
depth. The purpose of this model is simply to demonstrate the iteration that lies 
at the foundation of these images. 
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Mandelbrot Explained illustrates the complex plane and show iteration can be 
used to sort cells/values into those that, when run through an iterative process, 
exceed a set threshold value from those that don’t. Cells that lie on the edge of 
these two sets define create the beautiful, complex images that are the familiar 
province of fractals.
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Example of high resolution fractal created with FractInt freeware. 
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Iteration Explorer is final demonstration in the iteration sub-sequence. This tool 
allows users to plot the consequences of iterating an equation. Iterating an 
equation means starting with an initial value, running the value through a 
function, noting the result and then using the result as the next value run to be 
through the function. An example should make this clear:

Given that our initial value is 1 and our function is x + 2.
Step 1: 1+ 2 ->  3 
Step 2: record 3
Step 3: use 3 as new input, 3 + 2 ->  5
Step 4: record 5
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Step 5: use 5 as new input, 5 + 2 -> 7 and so on.

Obviously, this function will just continue to growth by a steady rate. Our answer 
includes points: the numbers 3, 5, 7 etc. and not the points in between these 
numbers. Functions that produce discrete results like this--where the results of 
the function is  a set or sequence of numbers are often called recurrence 
equations or difference equations.

When iterating equations, it is easy to find equations with quickly grow to an 
unmanageably large size. It is also easy to find equations that dwindle away to 
nothing after a few iterations. The most interesting equations are the class of 
equations that meander around for a while, sometimes a great while, before 
settling down to a particular value. These are the sort of equations that we will 
want to hunt for with the iteration explorer. 

Although explorer can be adapted to iterate any function, we will considering a 
particular equation, the logistic equation, and the iteration of its iterated or 
discrete form. This difference equation is represented mathematically as: 

  xn+1 = r
The xn+1 term represents the new value and also the value that will be used a xn 
in the next iteration.

The result of iterating the logistic difference equation is curious insofar as the 
result depends upon the value of r. For small values of r, the iterated result goes 
to zero. For slightly higher values, the result goes to a constant number, at even 
higher values of r the result oscillates between two point. With even higher 
values of r the oscillations are between 4, 8, 16 etc. unique values. 

The behavior observed in the explorer is also evident in natural systems that can 
be modeled by the logistic equation in discrete time. Fish population with very 
low growth rates (lower than the replacement rate) go quickly extinct no matter 
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what the initial population. With a growth rate slightly above the replacement rate, 
populations behave as we might expect--higher growth rates yield higher 
populations. At a certain point, the growth rate is so high that over-population in 
one generation results in a smaller population the very next generation. This 
smaller generation grows rapidly in the absence of competition and a boom/bust 
cycle commences.  The boom bust cycles have the potential to become quite 
complicated. It seems plausible that much of the intricacy and pattern in the 
natural world is the result of  chaotic dynamics like that observed in the logistic 
map.

Iteration 101 exercises:

1. Starting from a blank NetLogo screen, create a program that loops 100 times 
then quits. 

2. Create a NetLogo program that loops over  the list  [“Tom” “Dick”  “and” 
“Harriet”]  using a foreach loop and the special “?” character. The program 
should create and name (label) the turtles using the list.  Consider improving 
the program so that we don’t have turtles named with the silly name “and”. 

BTW: The other three names are NOT silly. They are the names of the three tortoises 
that Darwin bought back from the Galapagos (orig. “Tom Dick and Harry” but Harry was 
discovered to be of the gentle sex and so renamed “Harriet”. Harriet survived Darwin by 
124 years, dying in Australia in 2006.

3. Use the awkward but useful “n-values 10 [?]” primitive and the confusing but 
powerful “map” primitive to do something useful and powerful: A numbered list 
of the first 10 rows of Pascal’s triangle.

Iteration is the bread and butter of computer programming. It also has a 
prominent role in certain kinds of mathematics. Calculus, with its emphasis, on 
limits, can be presented as a way of thinking about the sums or slopes that are  
changing under an iterative process. Iteration is “automated” in mathematics in 
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differential equations which are used to describe changes in rates when the 
change in a quantity depends (in part) on the quantity in question. Because is 
typically the case that change in real-world quantities is closely tied to the levels 
of those quantities at a previous point in time, differential equations are one of 
the most frequently used tools in the physical scientist’s toolbox. 

A close cousin of the differential equation is the difference equation. Whereas the 
differential equation (when used as a model of real world phenomena) makes the 
assumption time flows continuously and is infinitely divisible, the difference 
equation makes the assumption that time happens in discrete lumps: hours, 
days, years, generations. 

There are wonderful visual tools that students can use to explore the world of 
modeling natural phenomena with differential equations. System dynamics (SD) 
“stock and flow” models  uses “stock” (quantities) and “flows” (rates of change) to 
create  models of dynamic situations: changing demographics, the spread of 
disease, adoption of technology etc. NetLogo has a SD stock and flow module 
that is included with the standard distribution. Although we will not focus much 
attention here on the system dynamics, it may be interesting for students to 
familiarize themselves with these methods. The realization that complex 
phenomena with reinforcing and inhibiting feedback can be captured by a set of 
equations is quite astonishing the first time one encounters it. 
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Fig. 6 Typical systems dynamic model showing positive and negative feedback.

Solitary equations in continuous time have simple behavior. Over time these 
functions grow, shrink, or approach an asymptote (a certain value that the 
function never quite achieves).Sets of interdependent equations can generate 
more complex behaviors: Oscillations, limit cycles, spiraling growth etc. 

When we move to difference equations in discrete time, truly complex behavior is 
available with only a single equation. Whereas the differential equations produce 
a continuous output of values, difference equations (aka recurrence relations) 
produces a sequence of numbers as output. 

The demonstration model, Iteration Explorer. helps students observe the 
consequences of iteration a equations in discrete time. 

Iteration Explorer Exercises 

1. Find two equations other than the examples provided that have “interesting 
behavior” ie. don’t simple grow infinitely, shrink or approach a value.
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2. What are the minimum requirement for “interesting behavior”.

3. Starting with a blank NetLogo screen create a program that prints a sequence 
to an output window. 

Modify the above program so that it uses the built in coordinate system in 
the world to plot values.

The Logistic Equation

The logistic equation is a mathematical model of exponential growth in the 
context of a constraint to growth: limited food or limited space. The constraint 
imposes a limit to growth and establishes a “carrying capacity”. The logistic 
equation was  first published by Pierre Verhulst in 1845 and has found wide 
application in artificial neural networks, biology, biomathematics, demography, 
economics, chemistry, mathematical psychology, probability, sociology, political 
science, and statistics. Technically, the logistic function is the solution of the 
simple first-order non-linear differential equation. 

If we consider the logistic equation in discrete time--for example, a situation 
where next year’s population depends on this year’s ending population--we arrive 
at something called the logistic map. The logistic map offers what has become 
the canonical example of a system that follows simple rules yet arrives as 
behaviors that are surprisingly complex. Often regarded as a “path to chaos”, the 
logistic map illustrates the dynamics of a deterministic system generating 
pseudorandom behavior. The logistic map has intrigued people since the late 
1940’s and the equation continues to be of great interest and pedagogical value 
as an illustration of various principles that lie at the heart of complexity science.
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Introduction to Concepts
During the 19th century, scientists were wrestling, perhaps for the first time in 
human history, with the somber observation that we live in a world of limited 
resources. Populations were growing and the land fit for agriculture (feeding 
people) was limited. Economist Thomas Malthus first expressed these ideas in a 
work called An Essay on the Principle of Population.  

"The power of population is so superior to the power of the earth 
to produce subsistence for man, that premature death must in 
some shape or other visit the human race. The vices of mankind 
are active and able ministers of depopulation. They are the 
precursors in the great army of destruction, and often finish the 
dreadful work themselves. But should they fail in this war of 
extermination, sickly seasons, epidemics, pestilence, and plague 
advance in terrific array, and sweep off their thousands and tens 
of thousands. Should success be still incomplete, gigantic 
inevitable famine stalks in the rear, and with one mighty blow 
levels the population with the food of the world".

—Malthus T.R. 1798. An essay on the principle of population. 
Chapter VII, p61[3]

These ideas had profound effect on the thinkers of the day. Darwin and Wallace 
independently arrived at their theories of natural selection after reading Malthus. 
A less well-known mathematician, Pierre Verhulst, developed an equation that 
modeled the interactions between population growth and the forces that limit 
growth.  This “Logistic Equation” as it is now known, can be stated in words quite 
simply: 

“The future size of the population (change in population) is affected positively by the 
growth rate (how many offspring are born) and negatively by consequences of 
overcrowding or resource depletion.”
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We can say this compactly mathematically (Fig.1):

Bear with me as we step through this equation. It is not as complicated as it 
might appear to those unfamiliar with mathematics. Verhulst’s equation shows 
how populations change over time--that’s the dP/dt part, its just a number -- 
given different intrinsic growth rates, r (called the Malthusian parameter) and 
different initial populations, P , when limited by some constraint to growth or 
carrying capacity, K.  The equation is called a first order non-linear ordinary 
differential equation. 

Even if you are unfamiliar with differential equations it is relatively easy to gain an 
intuition about how this works:

Consider the extreme situations. When the population, P, is small, the second 
term, is essentially equal to 1. Multiplying by one doesn’t change things.
Consequently the change in population is simply equal to the existing population 
times the growth rate, r. This results in rapid growth for any values of r greater 
than one since the new larger population is immediately used as the existing 

Fig. 1
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population and again multiplied by the 
growth rate. 

As the population grows the second term 
starts to matter. As population gets closer 
to the carrying capacity, K, the second 
term, (1 - P/K), gets closer to zero. 
Multiplying by zero or very small numbers 
results in zero or very small numbers.  This 
has the effect of essentially shutting down 
growth.
.
The second term (as it approaches zero) 
corresponds to slowed growth due to 
overcrowding or “reaching the carrying 
capacity”.  

The situation can be summarized with an idealized graph (Fig. 2) that represents 
the situation of early rapid growth followed by a leveling off. This is called, 
understandably, the S curve or, if you prefer your alphabet in Greek, the 
sigmoidal curve. 

Note: The logistic function is 
sometimes simplified to:

 

X is not the population directly. In 
this case x represents a slightly 
more abstract concept, namely, 
“percentage of max. population” or 
the population divided by the 
carrying capacity.  This is the form 
of the equation that we will be using 
in the models below. 

Fig. 2
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I have lingered over the description of the mathematics here because the logistic 
equation can serve as a bridge to understanding how mathematical models can 
be used to represent biological (or other) systems. 
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Modeling in NetLogo

Two NetLogo Models are introduced which illustrate modeling a biological system 
with a carrying capacity.

 

The first model uses the Logistic equation explicitly and demonstrates how to 
embed equations directly into NetLogo. This is easy to do in NetLogo and in 
many cases quite useful. This model is called Equation-based Logistic Function. 

Creating NetLogo models of mathematical models is surprising easy. In this case,  
the two lines of code

are responsible for most of the  behavior of the model.  X, however,  is 
determined by a global count of the agents (divided by maximum population 

The Equation-based Logistic Function
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possible)   In actual environments, individuals rarely have access to information 
about the global situation and , consequently, behavior is based on local 
interactions. Because of this, a model that relies only on local information would 
be give us more confidence that we are seeing the “right behavior for the right 
reason”. This idea is called the structural validity of a model. NetLogo makes it 
relatively easy to create models which highlight the interactions of lower-level 
relationships which give rise to the larger scale phenomena. The large scale 
behavior is sometimes called emergent behavior. The nature and study of 
emergent behavior is one of the primary motivations for research in complexity 
science. 

A second model reproduces the behavior of a logistic function from local 
constraints in the growth and death rates. This model is called the Emergent 
Logistic Function. 

This model illustrates what happens when reproduction depends upon available 
space (or available food). The familiar S-shaped curve readily emerges from 
these scenarios. Decomposing the situation into constraints that have 
parameters themselves (how much space to reproduce, how much food needed 
to reproduce) supports fine-grained investigations of real world situations.  
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As it turns out, the logistic function has broad application in various fields. In 
biology, as we have seen, it models growth under constraint. The logistic function 
is also used in biomathematics, economics, chemistry, psychology, probability, 
sociology, political science, and statistics. It can also be used to model tumor 
growth in cancer patients. In economics it can be used to understand how 
innovation spreads through a society. The logistic function also finds application 
in a branch of machine learning called neural networks. In this domain it is useful 
because it represents a function that can classify inputs and provide some 
feedback about its confidence of the classification (via an easy-to-calculate 
derivative).

We have examined the logistic equation as it was first presented to the world by 
Verhulst (and later by Lotka and others). Equations that, like the logistic equation, 
connect values and constants to differentials (rates of change) of those same 
values are called differential equations. To work with them we typically use 
calculus and the idea that we can divide time (and the number line) up into 
infinitely small pieces. This idea is called continuous time. Continuous time and 
continuity generally is typically assumed in the mathematics of functions that 
most of us encounter early in our math educations. 

Emergent Logistic Function
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Exercises for with the equation based  and emergent models:

1. Modify the equation-based model so that it would reflect the consequences of 
“inbound migration” of a certain number of animals each season. Each season 
a certain number of animals are added to the population from and external 
source.

2.  Modify the emergent model to include other constraints (food or suitable 
mates). Can you create a situation where the animals need space to 
reproduce but too much space decreases the likelihood of reproduction? This 
situation is quite important in real ecological systems and is called frequency 
dependence.

Discrete Time

The assumption of continuous time is not always warranted in real-world 
situations. We know that much of the phenomena that we observe in nature falls 
into discrete “bins”.  Mothers, for example, have a definite number of offspring:  1, 
2, or  3 but never 2.8 children. Populations typically change periodically as a 
result of single annual “birthing season”. We are taught to number our days, 
seasons, and generations and our numbering uses the “natural” or counting 
numbers rather than the real numbers (decimal) numbers. 

The assumption that time and events happens in definite “chunks” is called 
discrete time. When we work with a version of the logistic equation in discrete 
time we start to see some  very surprising behavior. This behavior and what it 
can teach about complexity is the primary reason that we are interested in the 
logistic equation here.
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When we work with the discrete time version of the logistic equation is called a 
difference equation. Using this equation requires that you are familiar with the 
concept called iteration. Iteration simply means doing something over and over 
again (usually with some small change introduced at each loop). Iteration is one 
of the areas in which computers excel.  The NetLogo Iteration models offers an 
opportunity to explore iteration generally and also allow us to look specifically 
what happens when we iterate the logistic map in discrete time. 

To iterate the above equation, we start with a value for x between 0 and 1 (0.5 is 
a good place to start) and a value of r between 0 and 4 (2.0 is a good value to 
start with) and solve the right side of the equation. The result goes into the left 
side and becomes the new x for the next iteration. Obviously this is a tedious 
affair and it is no wonder that no significant mathematical progress was made in 
this area prior to widespread availability of computers. 

Our interest here is what happens to x after many (as many as 10,000 or even 
more!) iterations.  Does x converge? Does is oscillate? If so, with what period? 

Bunnies

The Bunnies model is a straightforward visualization of what happens as we 
iterate the logistic map. The model illustrates both unfettered exponential growth 
and growth under constraint. 

Here’s the discrete time version of the logistic equation (called a 
quadratic recurrence equation or the logistic map):
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Exercises for Bunnies

1. Explore and record values of the growth rate for particular values in the 
following ranges:
a. 0 - 1.0
b. 1.0 - 2.0
c. 2.000 - 3.000
d. 3.00000 - 4.00000 (note the increased precision!)

2. Can you find a value for r that has a period of three?
3. I forgot to label the axis on the graph. Edit the graph (click on it) and label the 

axis with “Time” and 
4. “Population”
5. Advanced: Add code so that the model doesn’t plot values until the values 

settle into a pattern (remove initial transient values).

Visualizing the Logistic Map
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The results of the increasing r and iterating the difference equation, 

, can be visualized in several ways. Several of the 
models presented here allow students to understand graphically the process of 
iterating the equation and visualize the converge of the equation on various 
values. 
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The Web Diagram

The web diagram has become an icon for complexity science. It provides a 
simple means of visualizing the patterns that emerge as a consequence of 
iterating the logistic difference equation. The technique involves:

0) Label the axes: x (x axis) -> 0-1 and  xi+1(y axis) -> 0-1
1) Draw the parabola that represents all possible solutions xr(1 - x) for a given r 

in the range of 0 - 4. 
    Note: Simple algebra applied to  xr(1 - x)  yields  -rx2 + rx, a parabola.
    Remember. We get a different parabola for each value of r. 
2)  Draw the identity line (y=x), a diagonal passing through the origin
3) Start on the x axis at your initial x value and draw a vertical line until you 

reach the parabola. This is the result of the first iteration (generation) AND the 
result that we will use as our input in the next generation. 

4) Now draw a horizontal line toward (and until you hit) the diagonal.
5) Now draw a vertical line toward (and until you hit) the parabola.
    Step 4 and 5 essential converts the output into the input--think about it.
6) Repeat steps 4 and 5 above until a pattern emerges. 
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This is a satisfying exercise to perform with a ruler and graph paper. The paper 
version has the advantage of demystifying the process. it is recommended that 
students encounter the web diagram initially in the paper and pencil version. 

Sidebar: The history of cobweb diagram precedes the discover of the 
popularization of the logistic map. However, it grows out of a recognition of 
chaotic dynamics in the field of economics. Mordecai Ezekiel, an early 20th 
century economist, advanced his “cobweb theorem” to explain the self-
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perpetuating fluctuations of prices in agricultural markets. 

 "...Once allowance is made for the fact that in the real world functional 
adjustments take time and different forces in the system may operate with 
different 'velocities of adjustment' it may become possible to construct cases--
under the assumption that ruling prices are always expected to remain in 
operation...where the successive reactions lead away from, rather than 
approach, an equilibrium position." 

The assumptions underlying cobweb phenomena are lags in responses and 
"static expectations." (Kalder, 1934) 

Exercise:

1. Get a piece of graph paper and a ruler.
a. Make a graph and label horizontal axis x and vertical axis x’
b. Sketch a diagonal (the identity line)
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c. Create a symmetrical parabola with a maximum that doesn’t go above the 
diagonal (it doesn’t matter if it is actual a particular parabola just that it is 
symmetrical )

d. Follow step above with a starting value of x = .25
e. Repeat the above steps for two more parabolas: one that just crosses the 

diagonal and one parabola with a maximum near x’ = .9

--end sidebar--

The NetLogo model included allows a student to explore iterations at various r 
values quickly.  But the model also runs the risk of creating the illusion that the 
patterns are a consequence of some mysterious computer generated process. It 
is important to emphasize that it is the function: its parameter and initial 
conditions -- that is responsible for the patterns observed.
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A second model, Cobweb Player allows students to record and “flip” through 
images of the results of many iterations at each of 200 unique values of r. The 
resulting animation makes it clear there are distinct kind of behaviors that occur 
in different ranges of r. 
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To Create the Logistic Map
The final models in this series support visualization of ALL of the values 
approached by iterating the logistic map as we sweep through increasing values 
of r. 

When r is varied over a range of 0-4 and the equation is iterated many times for 
each value of r, a plot called the logistic map (or bifurcation diagram) arises. 
This plot summarizes all the behavior of the logistic equation for different values 
of r. 

The bifurcation diagram is created by choosing each value of r, and a given initial 
value of x. Using these two values, the difference equation is iterated for many, 
many times (10,000 +). The last 500-1000 values are captured and plotted 
against the value of r that was used in the equation. Initially, at low values of r,  
the final values all land at the same value. At higher values of r, the values land 
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at multiple  locations. Intricate patterns become apparent as the equation sweeps 
through different values of r.

The models provided allows students to zoom in on particular regions and vary 
the resolution (the level of iteration) at any particular point. 

There are many interesting things to discover in with values of r between 3 and 4.  
As the value of r increase the number of values that the equation converges 
toward -- the attractors increases. These doublings become increasingly common 
but the rate of increased doubling itself follows a pattern. The Feigenbaum 
constant δ = 4.669... is a universal constant, like pi and e, describes the ratio (int 
the limit) between the value of range of r values for one bifurcation interval and 
the next.  Discovered in 1978, the Feigenbaum constant holds for all one 
dimensional  chaotic systems with a single quadratic maximum (think parabola-
like shape). This period doubling-cascade  is characteristic of chaotic systems 
and one of the sources of order that exist in the midst of apparent chaos. 

There are other islands of stability  at higher values of r where the number of 
attractors suddenly drops to (for example) 3. This behavior is counterintuitive but 
practically relevant in study of semiconductor properties and material science. 

One area of special interest, called the Pomeau–Manneville scenario, ( r varies 
from approximately 3.5699 to approximately 3.8284) is characterized by a 
periodic or laminar phase interrupted by bursts of aperiodic behavior. 

Sensitivity to Initial Conditions

It seems quite reasonable to assume that things that are very similar suffer the 
same fates if exposed to similar processes. The study of chaotic systems reveals 
that intuition to be incorrect in certain situations. In this model we start with two 
values that are very close and use them as parameters--initial populations--in the 
logistic map. We see that after just a few dozens of iterations that calculated 
values may have diverged significantly. Furthermore, it is entirely possible that 
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two values “more different in value” than the pair that we just considered could 
actually converge to closer  values. Initial conditions come to mean less than the 
dynamics--the attractors--of the system.

The initial observation that some systems exhibited sensitivity to initial conditions 
is credited to the French mathematician Henri Poincare, (1854 – 1912). Poincare 
worked on a famous problem posed much earlier by Newton called the three 
body problem. The three body problem ask what the future motion of three 
mutually interacting bodies will be give their initial  positions, masses and 
velocities at some particular point in time. The bodies are assumed to be 
interacting in accordance with the laws of classical mechanics. 

As Poincare applied himself to this problem, he discovered that it was not 
possible to analytically describe (in terms of integral quantities such as velocities, 
position or mass ratios) the behavior of the three bodies in question. However, it 
was possible to describe the characteristic kinds of behavior that might occur. 
Poincare developed a new branch of mathematics called topology which 
formalized these concepts. 

Logistic Function/ Logistic Map Write Up DRAFT
John Balwit



Poincare also observed that small changes to the initial conditions might result in 
significant changes to the overall behavior of the system. For this insight, 
Poincare is recognized as one of the founders of the chaos theory. 

Universal Constants 

The logistic map features a series of bifurcations at increasingly smaller intervals 
as the parameter r increases. It is natural to wonder if there might not be some 
pattern underlying branching pattern. One of many objectives of science is to 
identify stable regularities underlying complex phenomena. The phenomena in 
question here is somewhat artificial--the increasingly less well organized plotted 
points on the logistic map--but the fact that a regularity can be found is quite 
remarkable. The further fact, that analogous regularities are found in physical 
systems such as the change from laminar to turbulent flow (in hydraulic or 
pneumatic systems) are even more remarkable. 

In 1975 Mitchell Feigenbaum discovered two universal constants for functions 
approaching chaos via period doubling. That is, Feigenbaum noticed that many 
systems move from a single stable point (an attractor), through a series of 
periodic doubling, finally to a state of aperiodic “randomness”.  Those systems 
which move through a period doubling phase have in common the fact that the 
doubling proceeds at an increasing rate. 
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It was surprising to discover that the rate of increase proceeded at a specific, 
single rate. Fiegenbaum and his colleagues were astonished, however, when 
they observed that the same rate applied to very different functions undergoing 
iteration and bifurcation. Apart from the astonishing universality of the constant, 
there is a practical benefit to be derived from applying the constant to the first few 
bifurcation in any system.   Noting the ratios between the first few bifurcations 
supports an accurate estimate of point at which a system becomes chaotic. 
Knowledge of this point might be useful to someone interested in managing a 
physical systems. 

The final model of the logistic equation/ logistic map series present a 
straightforward way to visualize the ratios involved in determining Feigenbaum’s 
constant. 
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Historical Sidebar:

During the 1970’s and 1980’s a theory based on the logistic equation was 
advanced and received widespread attention. The theory claimed that organisms 
evolved to adopt reproductive life strategies that capitalized on one or the other 
of the two antagonistic terms in the logistic equation. Organisms with r-selective 
strategies capitalized on the first term in the equation by emphasizing high-
fecundity, early maturity, short generation time and the ability to disperse widely. 
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On the other hand, other organisms were classified as K-selective strategists. 
These organisms tended to be larger, more long-lived, had high parental 
investment in offspring and employed strategies that addressed the problems of 
running into the upper limits of population growth. Unfortunately, like so many 
beautiful theories with intuitive appeal, the r/K selection theory failed when 
subjected to empirical testing--examples of long-lived, large but also high fecund 
organisms (trees) upset the theoretical simplicity that the r/K selection theory had 
suggested.
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